

求Hessian矩阵
$$
H = \begin{bmatrix} \frac{\partial^2 F}{\partial x_1^2} & \frac{\partial^2 F}{\partial x_1 \partial x_2} \\ \frac{\partial^2 F}{\partial x_2 \partial x_1} & \frac{\partial^2 F}{\partial x_2^2} \end{bmatrix}
$$
1. 计算 $\frac{\partial^2 F}{\partial x_1^2}$:
$$ \frac{\partial F}{\partial x_1} = 10x_1 - 6x_2 + 4 $$
再对$x_1$求偏导数:
$$ \frac{\partial^2 F}{\partial x_1^2} = 10 $$

所以Hessiaon矩阵为
$$ H = \begin{bmatrix} 10 & -6 \\ -6 & 10 \end{bmatrix} $$
由Hessian矩阵计算特征值与特征向量
$$ \det(H - \lambda I) = 0 $$
$$ \det(H - \lambda I) = (10 - \lambda)(10 - \lambda) - (-6)(-6) $$
$$ = (10 - \lambda)^2 - 36 $$